MAJOR SUBSETS OF α -RECURSIVELY ENUMERABLE SETS

BY C. T. CHONG

ABSTRACT

Let $s2cf(\alpha)$, $s2p(\alpha)$ and $ts2p(\alpha)$ denote the Σ_2 -cofinality, Σ_2 -projectum and the tame Σ_2 -projectum of an admissible ordinal α . We show that if $s2cf(\alpha) < s2p(\alpha)$, then no α -recursively enumerable set $(\alpha$ -r.e.) with complement of order type less than $ts2p(\alpha)$ can have a major subset. As a corollary, if $s2cf(\alpha) < s2p(\alpha)$, then no hyperhypersimple α -r.e. set can have a major subset.

Let $\mathscr{E}(\alpha)$ denote the lattice of α -r.e. sets ordered by inclusion \subseteq . A set K is said to be α^* -finite if it is α -finite and of order type less than α^* , the Σ_1 -projectum of α . If A and B are in $\mathscr{E}(\alpha)$, then we write $A = {}^*B$ if their symmetric difference is α^* -finite. Let $\mathscr{E}^*(\alpha)$ denote the lattice $\mathscr{E}(\alpha)$ modulo the α^* -finite sets. It has been found (Lerman [3], Chong and Lerman [1]) that the structure of $\mathscr{E}^*(\alpha)$ is more uniform for certain admissible ordinals $\alpha > \omega$. Thus if $\alpha = \mathbb{N}^L_1$, then there are no maximal α -r.e. sets nor hyperhypersimple α -r.e. sets, whereas if $\alpha = \mathbb{N}^L_{\omega}$, there are again no maximal α -r.e. sets while the class of hyperhypersimple α -r.e. sets, though nonempty, admits a neat characterization through order types of the complements of sets in $\mathscr{E}(\alpha)$. It is hoped that these nice properties will point a way towards establishing the decidability of the elementary theory of $\mathscr{E}(\alpha)$ (hence of $\mathscr{E}^*(\alpha)$, cf. Lerman [5]) and classifying those simple α -r.e. sets which form orbits (A and B in $\mathscr{E}^*(\alpha)$ are in the same orbit if there exists an automorphism Φ of $\mathscr{E}^*(\alpha)$ such that $\Phi(A) = B$).

The work on this paper was inspired by the attempt to study the relationship between major subsets of hyperhypersimple α -r.e. sets and their orbits. Recall that (cf. Lerman [4]) for A, B in $\mathcal{E}(\alpha)$, B is a major subset of A if

- (1) $B \subset A$,
- (2) A B is not α^* -finite, and
- (3) for each C in $\mathscr{C}(\alpha)$, if $A \cup C = \alpha$, then $B \cup C = *\alpha$.

Received November 2, 1977 and in revised form October 13, 1978

Leggett and Shore [2], generalizing an earlier result of Lerman [4], showed that if the Σ_2 -cofinality (s2cf(α)) is not less than the Σ_2 -projectum (s2p(α)) of α , then every α -r.e. non- α -recursive set has a major subset. It can be shown (cf. Leggett and Shore [2]) using this and the existence of hyperhypersimple α -r.e. sets for s2cf(α) < s2p(α), that for all admissible α , the simple α -r.e. sets do not have the same 1-type in the language of lattice theory. Two questions come naturally to mind:

- (1) Can the Leggett-Shore result be generalized to all α , and
- (2) What kind of role do major subsets play in the context of automorphisms of $\mathscr{E}^*(\alpha)$?

We show in this paper that the answer to (1) is in the negative. In fact, we show that if $s2cf(\alpha) < s2p(\alpha)$, then no A in $\mathscr{E}(\alpha)$ with order type of $\alpha - A$ (ot(\bar{A})) less than $ts2p(\alpha)$, the tame Σ_2 -projectum of α , has a major subset. On the other hand, Lerman, Shore and Soare recently showed [7, theorem 2.9] that there exist two atomless hyperhypersimple ω -r.e. sets which are not automorphic with respect to $\mathscr{E}^*(\omega)$. Now if $\alpha = \aleph^L_{\omega}$, for example, every hyperhypersimple α -r.e. set is atomless (this is an easy consequence of Chong-Lerman [1, corollary 4.13]). The proof of theorem 2.9 of [7] is done by exhibiting two atomless hyperhypersimple ω -r.e. sets, one with an r-maximal major subset and the other one without. This proof obviously cannot be lifted over to \aleph_{ω}^{L} since it follows from our result that major subsets do not exist for hyperhypersimple \aleph_{ω}^{L} -r.e. sets. From this point of view, it seems that any two hyperhypersimple \aleph_{ω}^{L} -r.e. sets might well be automorphic with respect to $\mathscr{E}^*(\aleph^L_\omega)$. We wish to thank the referee for pointing out a number of errors and inaccuracies in the original version of the paper. We also express our gratitude to M. Lerman for some very useful suggestions, and for discovering a gap in an earlier proof.

THEOREM. Let $\kappa = s2cf(\alpha) < s2p(\alpha)$. Let A be α -r.e. such that $ot(\bar{A}) < ts2p(\alpha)$. Then A has no major subsets.

We first state five lemmas whose proofs have appeared elsewhere. From now on, let $\kappa = s2cf(\alpha) < s2p(\alpha) \le ts2p(\alpha)$.

LEMMA 1 (Lerman-Simpson [6, lemma 3.1]). There is a simultaneously α -r.e. sequence of pairwise disjoint α -finite sets $\{H_{\eta} \mid \eta < \kappa\}$ such that

- (i) $\alpha = \bigcup \{H_{\eta} \mid \eta < \kappa\},$
- (ii) $\forall_{\eta < \kappa}$ ($\bigcup \{H_{\xi} \mid \xi < \eta\}$ is α -finite).

LEMMA 2 (Chong-Lerman [1, lemma 2.4]). Let X be an α -r.e. set such that ot $(\bar{X}) < \alpha^*$ or $ts2p(\alpha)$. Then X is α -regular.

LEMMA 3 (Lerman-Simpson [6, theorem 3.2]). Let S be an unbounded tame Σ_2 -subset of α . Let $K \subseteq \kappa$ be α -finite such that S is contained in $\bigcup \{H_{\eta} \mid \eta \in K\}$. Then there exist α -recursive sets X_0 and X_1 whose union is $\bigcup \{H_{\eta} \mid \eta \in K\}$ such that X_0 and X_1 split S into two parts, each unbounded in α .

LEMMA 4 (Lerman [3, lemma 2.4]). If X is an α -r.e. set of order type at least α^* , then X contains an α -r.e., non- α -recursive subset C.

LEMMA 5 (Lerman [3, lemma 2.7]). There is a nondecreasing α -recursive function t': $\alpha \times \kappa \to \alpha$ such that $\lim_{\sigma \to \alpha} t'(\sigma, \eta)$ exists for each $\eta < \kappa$ and is equal to $t(\eta)$. Furthermore, $t: \kappa \to \alpha$ is a strictly increasing Σ_2 -cofinality function of α .

Now let $B \subset A$ be α -r.e. such that A - B is not α *-finite. We will construct an α -r.e. set C such that $C \cup A = \alpha$ and $C \cup B \neq {}^*\alpha$. This will imply that B is not a major subset of A.

Let Γ = the least x such that $(A - B) \upharpoonright x$ is not α^* -finite.

If $\Gamma < \alpha$, then by Lemma 2, $A \upharpoonright \Gamma$ and hence $\overline{A} \upharpoonright \Gamma$ is α -finite. Let $C = \overline{A} \upharpoonright \Gamma \cup \{\nu \mid \Gamma \leq \nu < \alpha\}$. Clearly $C \cup A = \alpha$ and $C \cap ((A - B) \upharpoonright \Gamma)$ is empty so that $C \cup B \neq {}^*\alpha$ by the choice of Γ . C is furthermore α -r.e.

From now on, assume that $\Gamma = \alpha$.

Let the sets H_n and the function t be defined respectively as in Lemmas 1 and 5. Define $[\delta, \gamma] = \{ \nu \mid \delta \le \nu < \gamma \}$. Let

$$\hat{K} = \{(\nu, \eta) \mid H_{\eta} \cap \bar{A} \neq \emptyset \quad \text{and} \quad H_{\eta} \cap (A - B) \cap [t(\nu), \alpha) \neq \emptyset\}.$$

Then \hat{K} is a Σ_2 -subset of κ so that it is α -finite.

For each $\nu < \kappa$, let $k(\nu)$ be the least (if exists) η such that (ν, η) is in \hat{K} . Let ν_0 be the least $\nu < \kappa$ such that $k(\nu)$ is not defined. Suppose that ν_0 exists. Then for all $\eta < \kappa$, if

$$H_n \cap (A - B) \cap [t(\nu), \alpha) \neq \emptyset$$
 for some $\nu \ge \nu_0$,

then $H_n \cap \bar{A} = \emptyset$.

Let $K' = \{ \eta \mid \exists \nu \ge \nu_0(H_{\eta} \cap (A - B) \cap [t(\nu), \alpha) \ne \emptyset \}$. Again K' is α -finite. Define

$$C = \bigcup \{H_{\eta} \mid \eta \not\in K'\}.$$

Then $C \supset \overline{A}$ and $C \cap H_{\eta} = \emptyset$ for all η in K', so that $C \not\supset *\overline{B}$. This shows that B is not a major subset of A.

Now suppose that ν_0 does not exist so that $k(\nu)$ is defined for all $\nu < \kappa$. Let $K = \{k(\nu) \mid \nu < \kappa\}$.

For each $\eta = k(\nu)$ in K, let r_{η} be the least element of $H_{\eta} \cap (A - B) \cap [t(\nu), \alpha)$. We leave it to the reader to check using $\Gamma = \alpha$ that $R = \{r_{\eta} \mid \eta \in K\}$ is a non- α -recursive, tame Σ_2 -set. For η in K, let κ_{η} be the order type of $H_{\eta} \cap (\bar{A} \cup \{r_{\eta}\})$. Let r_{η} be the ρ_{η} th-element (in magnitude) of $H_{\eta} \cap (\bar{A} \cup \{r_{\eta}\})$. Clearly then there exists an $s < \text{ts} 2p(\alpha)$ such that $s > \kappa_{\eta}$ and ρ_{η} for all η in K.

LEMMA 6. The following maps are α -finite:

- (a) $\eta \mapsto \kappa_{\eta}$,
- (b) $\eta \mapsto \rho_{\eta}$.

PROOF. (a) Define $S(\eta, z)$ if and only if

 $\exists f \colon z \to H_n$ such that f is strictly increasing

and
$$\exists \sigma \forall \tau \ge \sigma \forall x < z(f(x)) \in \vec{A}^{\tau}$$
 or $f(x) = r_{\eta}$.

By the fact that A is α -regular (by Lemma 2) and that R is tame Σ_2 , we see that there exist z's such that $S(\eta, z)$. Also, if $S(\eta, z)$ then $S(\eta, z')$ for all z' < z. But S is a tame Σ_2 -set bounded in $ts2p(\alpha)$, hence it is α -finite. Then κ_{η} is just the least z such that $\sim S(\eta, z + 1)$.

(b) This time define $S(\eta, z + 1)$ if and only if

$$\exists f: z+1 \rightarrow H_{\eta}$$
 such that f is strictly increasing

and
$$\exists \sigma \forall \tau \ge \sigma \forall x < z (f(x) \in \bar{A}^{\tau} \text{ and } f(z) = r_{\eta}).$$

Now if $S(\eta, z+1)$ then $z \le \rho_{\eta}$, and if $S(\eta, z+1)$ then $S(\eta, z'+1)$ for all z' < z. As in (a), S is α -finite. Then ρ_{η} is just the least z such that $\sim S(\eta, z+2)$.

We now define by induction an α -recursive function T' which is an approximation of elements of $H_{\eta} \cap (\bar{A} \cup \{r_{\eta}\})$ at stage σ .

For η in K, let

$$\begin{cases} \text{ the least } x \geq \max_{\delta < \gamma} \left\{ T'(<\sigma, \eta, \gamma), T'(\sigma, \eta, \delta) \right\} \\ \text{ such that } x \in \bar{A}^{\sigma} \cap H_{\eta}, \text{ if } \gamma < \rho_{\eta} < \kappa_{\eta} \text{ or } \rho_{\eta} < \gamma < \kappa_{\eta}; \end{cases}$$

$$T'(\sigma, \eta, \gamma) = \begin{cases} \text{ the least } x \geq \max_{\delta < \gamma} \left\{ T'(<\sigma, \eta, \gamma), T'(\sigma, \eta, \delta) \right\} \\ \text{ such that } x \in H_{\eta} \cap [t'(\sigma, \nu), \sigma) - B^{\sigma}, \\ \text{ where } k(\nu) = \eta \text{ and } \gamma = \rho_{\eta}. \end{cases}$$

The function t' used above is as defined in Lemma 5.

Thus $x = T'(\sigma, \eta, \gamma)$ if at stage σ , x appears to be the γ th element of $H_{\eta} \cap (\bar{A} \cup \{r_{\eta}\})$. Our purpose is to select an α -r.e. set C containing \bar{A} but disjoint from $R = \{r_{\eta} \mid \eta \in K\}$. Now whereas elements of $\bar{A} \cap H_{\eta}$ are enumerated in a Π_1 manner, the relation " $x = r_{\eta}$ " is however Σ_2 . Thus if $T'(\sigma, \eta, \gamma) =$ the γ th element of $H_{\eta} \cap (\bar{A} \cup \{r_{\eta}\})$ (write this as $T(\eta, \gamma)$), and $\gamma > \rho_{\eta}$, it does not necessarily imply that $T'(\sigma, \eta, \rho_{\eta}) = r_{\eta}$. Note on the other hand that $T'(\sigma, \eta, \delta) \leq T'(\tau, \eta, \gamma)$ for $\sigma \leq \tau$ and $\delta \leq \gamma$. Furthermore, it can be checked using the tame Σ_2 -ness of R and the α -regularity of A (hence of \bar{A}) that $\lim_{\sigma \to \alpha} T'(\sigma, \eta, \gamma) = T(\eta, \gamma)$ exists for each $\gamma < \kappa_{\eta}$. Thus precautions will have to be taken to ensure that the α -r.e. set C to be constructed is disjoint from R. The following steps are designed precisely for such purposes.

For η in K, let

$$D_{\eta}^{+} = \{ \gamma \mid \rho_{\eta} < \gamma < \kappa_{n} \quad \text{and} \quad (\exists \sigma) (T'(\sigma, \eta, \gamma) = T(\eta, \rho_{\eta}) \quad \text{and}$$

$$(\exists \tau) (T'(\tau, \eta, \gamma) = T(\eta, \gamma) \quad \text{and} \quad T'(\tau, \eta, \rho_{\eta}) < T(\eta, \rho_{\eta}) \}.$$

Then D_{η}^+ consists of γ 's which under T' approximate to the wrong value $T(\eta, \rho_{\eta}) = r_{\eta}$ at some stage and which arrive at the right values before ρ_{η} does.

$$D_{\eta} = \{ \gamma \mid \rho_{\eta} < \gamma < \kappa_{\eta} \quad \text{and} \quad (\exists \sigma) (T'(\sigma, \eta, \gamma) = T(\eta, \rho_{\eta}) \}.$$

Clearly $D_{\eta}^+ \subset D_{\eta}$.

LEMMA 7. Each D_{η} , hence D_{η}^+ , is a finite set.

PROOF. Suppose that $\{\gamma_n\}_{n<\omega}\subset D_n$ is an infinite increasing sequence of ordinals. Let σ_n be the least σ such that $T'(\sigma, \eta, \gamma_n) = T(\eta, \rho_n)$. Then $\sigma_n < \sigma_m$ if n > m. Then $\{\sigma_n\}_{n<\omega}$ is an infinite descending sequence of ordinals, and this is a contradiction.

Next observe that $\eta \mapsto D_{\eta}^+$ and $\eta \mapsto D_{\eta}$ are α -finite maps. This can be seen (again) using the tame Σ_2 -ness of R and the α -regularity of A. Each of D_{η}^+ and D_{η} is a finite subset of κ_{η} defined in a tame Σ_2 -manner. Then $\bigcup = \{(\eta, \gamma) \mid \gamma \in D_{\eta}^+\}$ when ordered lexicographically has order type of $(K) \le \kappa$. The same is true when D_{η}^+ is replaced by D_{η} in \bigcup . Since $\kappa < \text{ts2p}(\alpha)$, we see that U can be viewed as a tame Σ_2 -set bounded below $\text{ts2p}(\alpha)$, and hence α -finite. (Note: a tacit use here is made of the fact that of $(\bar{A}) < \text{ts2p}(\alpha)$.)

It follows that there is an α -finite map $\hat{\gamma}$ such that for each $p \leq \operatorname{card}(D_{\eta}^+)$, $\hat{\gamma}(\eta, p)$ is equal to the pth element of D_{η}^+ . The same conclusion also holds if D_{η}^+ is replaced by D_{η} .

Now let γ be in D_{η}^+ . For each σ , let $j(\sigma, \eta, \gamma)$ = the least stage τ such that $T'(\tau, \eta, \rho_{\eta}) \ge T'(\sigma, \eta, \gamma)$. Let $j^{(0)}(\sigma, \eta, \gamma) = \sigma$. If $j^{(k)}(\sigma, \eta, \gamma)$ has been defined, let

$$j^{(k+1)}(\sigma, \eta, \gamma) = j(j^{(k)}(\sigma, \eta, \gamma), \eta, \gamma).$$

Then each $j^{(k)}$ is a partial α -recursive function and $j^{(k)}(\sigma, \eta, \gamma)$ is defined except when $T'(j^{(k-1)}(\sigma, \eta, \gamma), \eta, \gamma) > T(\eta, \rho_{\eta})$.

Since γ is in D_{η}^+ , there is a σ such that $T'(\sigma, \eta, \gamma) = T(\eta, \rho_{\eta})$. Then $T'(j(\sigma, \eta, \gamma), \eta, \gamma) = T(\eta, \gamma)$. For each k, let σ_k , if defined, be the least stage σ such that

(*)
$$T'(j^{(k)}(\sigma,\eta,\gamma),\eta,\gamma) = T(\eta,\gamma).$$

By our choice of σ_k and γ , clearly $T'(\sigma_k, \eta, \gamma) \leq T(\eta, \rho_\eta)$. Notice that if k > m, then $\sigma_k < \sigma_m$ (when both are defined). There is then a largest k, denoted $k(\gamma)$, such that (*) holds. Then if $\sigma < \sigma_{k(\gamma)}$, we have $T'(j^{(k)}(\sigma, \eta, \gamma), \eta, \gamma) < T(\eta, \gamma)$ for any k such that $j^{(k)}(\sigma, \eta, \gamma)$ is defined.

LEMMA 8. Let γ be in D_{η}^+ . Let $k(\gamma)$ be as defined above. Then for all σ , $T'(j^{(k(\gamma))}(\sigma, \eta, \gamma), \eta, \gamma) \neq T(\eta, \rho_{\eta})$ and there is a σ such that $T'(j^{(k(\gamma))}(\sigma, \eta, \gamma), \eta, \gamma) = T(\eta, \gamma)$.

PROOF. Suppose that there is a σ such that

$$T'(j^{(k(\gamma))}(\sigma,\eta,\gamma),\eta,\gamma)=T(\eta,\rho_{\eta}).$$

Then $T'(j^{(k(\gamma))+1}(\sigma, \eta, \gamma), \eta, \gamma) = T(\eta, \gamma)$. But this contradicts our choice of $k(\gamma)$. On the other hand, we clearly have $T'(j^{(k(\gamma))}(\sigma_{k(\gamma)}, \eta, \gamma), \eta, \gamma) = T(\eta, \gamma)$.

Recall that there is an α -finite map $\hat{\gamma}$ such that $\hat{\gamma}(\eta, p)$ is the pth element of D_{η}^+ . We leave it to the reader to check that $\hat{\gamma}(\eta, p) \mapsto k(\gamma(\eta, p))$ is an α -finite map. This α -finite map then provides us with an efficient method of picking out the $\hat{\gamma}(\eta, p)$ th element of $H_{\eta} \cap (\bar{A} \cup \{r_{\eta}\})$, which is actually a member of \bar{A} , without "touching" r_{η} , according to Lemma 8.

Having taken care of D_{η}^+ , let us consider $E_{\eta} = D_{\eta} - D_{\eta}^+$. As before, $n \mapsto E_{\eta}$ is α -finite. For $m \le \operatorname{card}(E_{\eta})$, let $\varepsilon(\eta, m)$ denote the mth element of E_{η} . For convenience, let $r_{\eta} = \varepsilon(\eta, 0)$. Then on E_{η} , the function T' satisfies the following:

- (i) $T'(\sigma, \eta, \varepsilon)$ is defined for ε in E_{η} ;
- (ii) For all $\sigma \le \tau$, $1 \le m \le \operatorname{card}(E_n)$, we have

 $T'(\sigma, \eta, \varepsilon(\eta, 0)) < T'(\sigma, \eta, \varepsilon(\eta, m))$ and $T'(\sigma, \eta, \varepsilon(\eta, m)) \le T'(\tau, \eta, \varepsilon(\eta, m))$;

- (iii) $\lim_{\sigma \to \alpha} T'(\sigma, \eta, \varepsilon) = T(\eta, \varepsilon)$ exists for each ε in E_{η} ;
- (iv) If ε is in E_{η} and $T'(\sigma, \eta, \varepsilon) = T(\eta, \varepsilon)$, then $T'(\sigma, \eta, \rho_{\eta}) = T(\eta, \rho_{\eta})$.

The following lemma evolved from Chong and Lerman [1, theorem 4.7].

LEMMA 9. There is a partial α -recursive function $f': \alpha \times K \times \omega \to \omega$ such that

- (a) $f'(\sigma, \eta, m)$ is defined whenever $\varepsilon(\eta, m)$ is in E_{η} ;
- (b) for each $m \le \operatorname{card}(E_{\eta})$, there is a σ such that for all $\tau \ge \sigma$, all $n \le m$,

$$f'(\tau, \eta, n) = f'(\sigma, \eta, n);$$

- (c) let $f(\eta, m) = \lim_{\sigma \to \alpha} f'(\sigma, \eta, m)$. Then the graph of f is α -finite.
- (d) for any σ , if $f'(\sigma, \eta, m) = f(\eta, m)$, where $m \le \operatorname{card}(E_{\eta})$, and $T'(\sigma, \eta, \varepsilon(\eta, m)) = x$, then $x \ne T(\eta, p_{\eta}) = r_{\eta}$.

PROOF. Define f' by stages. Let $f'(\sigma, \eta, m)$ be undefined if m = 0 or if $m > \operatorname{card}(E_{\eta})$. Now let η be in K and let $1 \le m \le \operatorname{card}(E_{\eta})$. Compute $T'(\sigma, \eta, \varepsilon(\eta, m))$ and $T'(\sigma, \eta, \varepsilon(\eta, 0))$. Let τ_0 be the least $\lambda \le \sigma$ such that $T'(\lambda, \eta, \varepsilon(\eta, m)) = T'(\sigma, \eta, \varepsilon(\eta, m))$. If there does not exist a $\xi < \tau_0$ such that $T'(\xi, \eta, \varepsilon(\eta, m)) = T'(\tau_0, \eta, \varepsilon(\eta, 0))$, set $f'(\sigma, \eta, m) = 0$. Otherwise, let ζ be the least $\xi < \tau_0$ such that $T'(\xi, \eta, \varepsilon(\eta, m)) = T'(\tau_0, \eta, \varepsilon(\eta, 0))$. Let $f'(\sigma, \eta, m) = f'(\xi, \eta, m) + 1$. Finally, if η is not in K, let $f'(\sigma, \eta, m)$ be undefined for all m and σ .

Observe that f' maps a subset of $\alpha \times K \times \omega$ into ω . Also, $f'(\sigma, \eta, m) = f'(\tau, \eta, m)$ if $T'(\sigma, \eta, \varepsilon(\eta, m)) = T'(\tau, \eta, \varepsilon(\eta, m))$. Since T' satisfies condition (iii) outlined above, and since each E_{η} is finite, we see that (a) and (b) are true. To prove (c), note that the graph of f is a Σ_2 -subset of $K \times \omega \times \omega$. Since $K \subseteq \kappa$ and $\omega \le \kappa$, we see that graph $(f) \subseteq \kappa$ (since κ is an α -cardinal hence closed under pairing). But $\kappa < \text{s2p}(\alpha)$, thus the graph of f is a Σ_2 -set bounded below $\text{s2p}(\alpha)$, hence α -finite, and this proves (c).

To prove (d), suppose that $f'(\sigma, \eta, m) = f(\eta, m)$ and let $T'(\sigma, \eta, \varepsilon(\eta, m)) = x$ (it is assumed here that $1 \le m \le \operatorname{card}(E_\eta)$). If (d) is false, then $x = T(\eta, \rho_\eta)$. Let ζ be the least ζ' such that $T'(\zeta', \eta, \varepsilon(\eta, m)) = T(\eta, \varepsilon(\eta, m))$. Then $\zeta > \sigma$. By condition (iv), $T'(\zeta, \eta, \rho_\eta) = T(\eta, \rho_\eta)$. But $T'(\zeta, \eta, \varepsilon(\eta, m)) = T(\eta, \varepsilon(\eta, m))$ and so $f'(\zeta, \eta, m) = f(\eta, m)$. Now let ξ be the least ξ' such that $\xi' \le \sigma$ and $T'(\xi', \eta, \varepsilon(\eta, m)) = T(\eta, \rho_\eta)$. Then $f'(\sigma, \eta, m) = f'(\xi, \eta, m)$ and $T'(\zeta, \eta, \rho_\eta) = T(\eta, \rho_\eta) = T'(\xi, \eta, \varepsilon(\eta, m))$ implies that $f'(\zeta, \eta, m) = f'(\xi, \eta, m) + 1$. We therefore get $f'(\sigma, \eta, m) \ne f(\eta, m)$, contrary to the choice of σ .

The proof of Lemma 9 is complete.

We are now ready to define an α -r.e. set C which will show that B is not a major subset of A.

$$C = \bigcup \{H_{\eta} \mid \eta \not\in K\} \cup \{T'(\sigma, \eta, \gamma) \mid \sigma < \alpha, \eta \in K, \text{ and } \gamma \not\in D_{\eta}\}$$

$$\cup \{T'(\sigma, \eta, \varepsilon(\eta, m)) \mid \sigma < \alpha, 1 \leq m \leq \operatorname{card}(E_{\eta}) \text{ and } f'(\sigma, \eta, m)$$

$$= f(\eta, m)\}$$

$$\cup \{T'(j^{(k(\gamma(\eta, p)))}(\sigma, \eta, \hat{\gamma}(\eta, p)), \eta, \hat{\gamma}(\eta, p)) \mid$$

$$\sigma < \alpha \text{ and } \hat{\gamma}(\eta, p) \text{ is the } p \text{th element of } D_{\eta}^{+}\}.$$

Clearly $C \supset \overline{A}$. Using Lemmas 8 and 9 (d), we see that $C \cap R = \emptyset$, so that $C \not\supset *B$. The proof of our Theorem is complete.

COROLLARY 10. Let $s2cf(\alpha) < s2p(\alpha)$. Let H be a hyperhypersimple α -r.e. set. Then H does not have a major subset.

PROOF. By Chong-Lerman [1, corollary 4.25] (also cf. Lerman [5, theorem 4.4]), ot $(\bar{H}) < \alpha^*$ and \bar{H} has a final segment of order type less than the tame Σ_2 -projectum of α (ts2p(α)). Now by Lemma 2, H is α -regular. Let δ_0 be the least ordinal such that $[\delta_0, \alpha) \cap \bar{H}$ is of order-type less than ts2p(α). Let $H' = H \cup \delta_0$. Let B in $\mathscr{C}(\alpha)$ be a subset of H such that H - B is not α^* -finite. Then $B \subset H'$ and H' - B is not α^* -finite. By Theorem, there is a C in $\mathscr{C}(\alpha)$ which is a counterexample to B being a major subset of H'. Now if $\delta_0 = 0$, then H = H' and so B is not a major subset of H. If $\delta_0 > 0$, then $h \upharpoonright \delta_0$ is α -finite since H is α -regular. Let K be H' - H which is just $(H' - H) \upharpoonright \delta_0$. Let $C' = C \cup K$. Then we see that C' is a set showing that B is not a major subset of H.

COROLLARY 11. Let $s2cf(\alpha) < s2p(\alpha)$. If A in $\mathscr{E}(\alpha)$ is α -regular, and \bar{A} has a final segment of order type less than $ts2p(\alpha)$, then A has no major subsets.

PROOF. Observe that in the proof of Corollary 10, the fact that \bar{H} was of order type $< \alpha^*$ was used only to obtain the α -regularity of H.

REFERENCES

- 1. C. T. Chong and M. Lerman, Hyperhypersimple α-r.e. sets, Ann. Math. Logic 9 (1976), 1-48.
- 2. A. Leggett and R. A. Shore, Types of simple α -recursively enumerable sets, J. Symbolic Logic 41 (1976), 681-694.
 - 3. M. Lerman, Maximal α -r.e. sets, Trans. Amer. Math. Soc. 188 (1974), 341–386.
- 4. M. Lerman, Types of simple α -recursively enumerable sets, J. Symbolic Logic 41 (1976), 419-426.
 - 5. M. Lerman, Lattices of α -recursively enumerable sets, to appear.

- 6. M. Lerman and S. G. Simpson, Maximal sets in α -recursion theory, Israel J. Math. 14 (1973), 236-247.
- 7. M. Lerman, R. A. Shore, and R. I. Soare, R-maximal major subsets, Israel J. Math. 31 (1978), 1-18.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SINGAPORE
SINGAPORE 10, REPUBLIC OF SINGAPORE